Begin main content
 

Publications on GPIHBP1, LPL, and Plasma Triglyceride Metabolism

  1. Li H, Liu G, Wan X, Zhou L, Qin ZB, Ma XH, Su K, Liu YJ, Yuan J, Wei CC, Ren AJ, Chen YX, Young SG, Zhang H, Xie Z, Zhang WJ. (2021) The zinc finger and BTB domain containing protein ZBTB20 regulates plasma triglyceride metabolism by repressing LPL gene transcription in hepatocytesHepatology (Baltimore, Md.). doi: 10.1002/hep.32176.
  2. Kristensen KK, Leth-Espensen KZ, Kumari A, Gronnemose AL, Lund-Winther A-M, Young SG, Ploug M. (2021) GPIHBP1 and ANGPTL4 utilize protein disorder to orchestrate order in plasma triglyceride metabolism and regulate compartmentalization of LPL activityFrontiers Cell and Developmental Biology. 9: 702508. doi: 10.3389/fcell.2021.702508.
  3. Winther A-ML, Kumari A, Young SG, Ploug M. (2021) ANGPTL4 sensitizes lipoprotein lipase to PSCK3 cleavage by catalyzing its unfolding. ("Images in Lipid Research") J Lipid Res. doi: 10.1016/j.jlr.2021.100071.
  4. Leth-Espensen KZ, Kristensen KK, Kumari A, Winther A-ML, Young SG, Jorgensen TJD, Ploug M. (2021) The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding. Proc. Natl. Acad. Sci USA. 118(12): e2026650118. doi: 10.1073/pnas.2026650118.
  5. He C, Migawa MT, Chen K, Weston TA, Song W, Tanowitz M, Guagliardo P, Iyer KS, Bennett CF, Fong LG, Seth PP, Young SG, Jiang H. (2021) High-resolution visualization and quantification of nucleic acid-based therapeutics in cells and tissues using Nanoscale secondary ion mass spectrometry (NanoSIMS). Nucleic Acids Research. 49(1): 1–14. doi: 10.1093/nar/gkaa1112.
  6. Miyashita K, Lutz J, Hudgins LC, Toib D, Ashraf AP, Song W, Murakami M, Nakajima K, Ploug M, Fong LG, Young SG, Beigneux AP. (2020) Chylomicronemia from GPIHBP1 autoantibodies. J. Lipid Res. 61(11): 1365–1376. doi: 10.1194/jlr.R120001116.
  7. Ferrari A, He C, Kennelly JP, Sandhu J, Xiao X, Chi X, Jiang H, Young SG, Tontonoz P. (2020) Aster proteins regulate the accessible cholesterol pool in the plasma membrane. Molecular and Cellular Biology, 40(19): e00255-20. doi: 10.1128/MCB.00255-20.
  8. Luz J, Beigneux A, Asamoto DK, He C, Song W, Allan CM, Morales JE, Tu Y, Kwok A, Cottle T, Meiyappan M, Fong LG, Kim J, Ploug M, Young SG, Birrane G. (2020) The structural basis for monoclonal antibody 5D2 binding to the tryptophan-rich loop of lipoprotein lipase. J. Lipid Res. 61(10): 1347–1359. doi: 10.1194/MCB.00255-20.
  9. He C, Song W, Weston TA, Tran C, Kurtz I, Zuckerman JE, Guagliardo P, Miner JH, Ivanov SV, Bougoure J, Hudson BG, Colon S, Voziyan PA, Bhave G, Fong LG, Young SG, Jiang H. (2020) Peroxidasin-mediated bromine enrichment of basement membranes. Proc. Natl. Acad. Sci USA. 117(27): 15827–15836. doi: 10.1073/pnas.2007749117.
  10. Lutz J, Dunaj-Kazmierowska M, Arcan S, Kassner U, Miyashita K, Murakami M, Ploug M, Fong LG, Young SG, Nakajima K, Beigneux A. (2020) Chylomicronemia from GPIHBP1 autoantibodies successfully treated with rituximab: a case report. Ann. Intern. med. 173(9): 764–765. doi: 10.7326/L20-0327.
  11. Jiang H, He C, Fong LG, Young SG. (2020) The fatty acids from LPL-mediated processing of triglyceride-rich lipoproteins are taken up rapidly by cardiomyocytes. (Images in Lipid Research). J. Lipid Res. 61(6):815. doi: 10.1194/jlr.ILR120000783.
  12. Meng X, Zeng W, Young SG, Fong LG. (2020) GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells (Images in Lipid Research). J. Lipid Res. 61(5):591. doi: 10.1194/jlr.ILR120000735.
  13. Van Vveldhoven PP, de Schryver E, Young SG, Zwijsen A, Fransen M, Espeel M, Baes M, Vann Ael E. (2020) Slc25a17 gene trapped mice: PMP34 plays a role in the peroxisomal degradation of phytanic and pristanic acid. Frontiers in Cell and Developmental Biologydoi: 10.3389/fcell.2020.00144.
  14. He C, Jiang H, Song W, Riezman H, Tontonoz P, Weston TA, Guagliardo P, Kim PH, Jung R, Heizer P, Fong LG, Young SG. (2020) Cultured macrophages transfer surplus cholesterol into adjacent cells in the absence of serum or high-density lipoproteins. Proc. Natl. Acad. Sci. USA 2020 May 12. doi: 10.1073/pnas.1922879117. Epub 2020 Apr 30.
  15. Belling JN, Heidenreich LK, Tian Z, Mendoza AM, Chiou TT, Gong Y, Chen NY, Young TD, Wattanatorn N, Park JH, Scarabelli L, Chiang N, Takahashi J, Young SG, Stieg AZ, De Oliveira S, Huang TJ, Weiss PS, Jonas SJ. (2020) Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells. Proc. Natl. Acad. Sci. USA 2020 May 1. doi: 10.1073/pnas.1917125117. [Epub ahead of print].
  16. Kristensen KK, Leth-Espensen KZ, Young SG, Ploug M. (2020) ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPL's hydrolase domain. J Lipid Res. 2020 Apr 23. pii: jlr.ILR120000780. doi: 10.1194/jlr.ILR120000780. [Epub ahead of print].
  17. Kristensen KK, Leth-Espensen KZ, Mertens HDT, Birrane G, Meiyappan M, Olivecrona G, Jorgensen TJD, Young SG, Ploug M. (2020) Unfolding of Monomeric Lipoprotein Lipase by ANGPTL4: Insight Into the Regulation of Plasma Triglyceride Metabolism. Proc. Natl. Acad. Sci. USA Feb 7. doi: 10.1073/pnas.1920202117.
  18. Hu X, Weston TA, He C, Jung RS, Heizer PJ, Young BD, Tu Y, Tontonoz P, Wohlschlegel JA, Jiang H, Young SG, Fong LG. (2019) Release of cholesterol-rich particles from the macrophage plasma membrane during movement of filopodia and lamellipodia. Elife. pii: e50231. doi: 10.7554/eLife.50231. [Epub ahead of print]
  19. Young SG, Fong LG, Beigneux AP, Allan CM, He C, Jiang H, Nakajima K, Meiyappan M, Birrane G Ploug M. (2019) GPIHBP1 and lipoprotein lipase, partners in plasma triglyceride metabolism. Cell Metab. 30: 51–65.
  20. Leth JM, Leth-Espensen KZ, Kristensen KK, Kumari A, Lund Winther AM, Young SG, Ploug M. (2019) Evolution and medical significance of LU Domain–containing proteins. Int. J. Mol. Sci. pii: E2760. doi: 10.3390/ijms20112760. 
  21. Hu X, Matsumoto K, Jung RS, Weston TA, Heizer PJ, He C, Sandoval NP, Allan CM, Tu Y, Vinters HV, Liau LM, Ellison RM, Morales JE, Baufeld LJ, Bayley NA, He L, Betshotlz C, Beigneux AP, Nathanson DA, Gerhardt H, Young SG, Fong LG, Jiang H. (2019) GPIHBP1 expression in gliomas promotes utilization of lipoprotein–derived nutrientsElife pii: e47178. doi: 10.7554/eLife.47178. [Epub ahead of print]
  22. Beigneux, AP, Allan CM, Sandoval NP, Cho GW, Heizer PJ, Jung RS, Stanhope KL, Havel PJ, Birrane G, Meiyappan M, Gill JE, Murakami M, Miyashita K, Nakajima K, Ploug M, Fong SG, Young SG. (2019) Lipoprotein lipase is active as a monomer. Proc. Natl. Acad. Sci. USA Mar 8. pii: 201900983. doi: 10.1073/pnas.1900983116. [Epub ahead of print]
  23. Allan CM, Heizer PJ, Tu Y, Sandoval NP, Jung RS, Morales JE, Sajti E, Troutman TD, Saunders TL, Cusanovich DA, Beigneux AP, Romanoski CE, Fong LG, Young SG. An upstream enhancer regulates Gpihbp1 expression in a tissue-specific manner. J Lipid Res. 2018 Dec 31. pii: jlr.M091322. doi: 10.1194/jlr.M091322. [Epub ahead of print]
  24. Eguchi J, Miyashita K, Fukamachi I, Nakajima K, Murakami M, Kawahara Y, Yamashita T, Ohta Y, Abe K, Nakatsuka A, Mino M, Takase S, Okazaki H, Hegele RA, Ploug M, Hu X, Wada J, Young SG, Beigneux AP. (2018) GPIHBP1 autoantibody syndrome during interferon B1A treatment. J Clin Lipidol. 2018 Oct 24. pii: S1933-2874(18)30424-0. doi: 10.1016/j.jacl.2018.10.004. [Epub ahead of print]
  25. He C, Hu X, Weston TA, Jung RS, Heizer P, Tu Y, Ellison R, Matsumoto K, Gerhardt H, Tontonoz P, Fong LG, Young SG, Jiang H. (2018) NanoSIMS imaging reveals unexpected heterogeneity in nutrient uptake by brown adipocytes. Biochem Biophys Res Commun. 2018 Oct 12;504(4):899-902. doi: 10.1016/j.bbrc.2018.09.051. Epub 2018 Sep 15.
  26. Miyashita K, Fukamachi I, Machida T, Nakajima K, Young SG, Murakami M, Beigneux A, Nakajima K. (2018) An ELISA for quantifying GPIHBP1 autoantibodies and making a diagnosis of the GPIHBP1 autoantibody syndrome. Clin Chim Acta. 2018 Dec;487:174-178. doi: 10.1016/j.cca.2018.09.039. Epub 2018 Oct 1
  27. Birrane G, Beigneux AP, Dwyer B, Strack-Logue B, Kristensen KK, Francone OL, Fong LG, Mertens HDT, Pan CQ, Ploug M, Young SG, Meiyappan M. (2018) Structure of the lipoprotein lipase-GPIHBP1 complex that mediates plasma triglyceride hydrolysis. Proc Natl Acad Sci U S A. 2018 Dec 17. pii: 201817984. doi: 10.1073/pnas.1817984116.
  28. He C, Hu X, Weston TA, Jung RS, Sandhu J, Huang S, Heizer P, Kim J, Ellison R, Xu J, Kilburn M, Bensinger SJ, Riezman H, Tontonoz P, Fong LG, Jiang H, Young SG (2018) Macrophages release plasma membrane–derived particles rich in accessible cholesterol. Proc. Natl. Acad. Sci USA m 2018 Sep 4;115(36):E8499-E8508. doi: 10.1073/pnas.1810724115. Epub 2018 Aug 20.  PMC6130402.
  29. Kristensen KK, Midtgaard SR, Mysling S, Kovrov O, Hansen LB, Skar-Ginsling N, Beigneux AP, Kragelund BK, Olivecrona G, Young SG, Jørgensen, Fong LG, Ploug M.  (2018) Disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase. Proc. Natl. Acad. Sci USA 115: E6020-E6029. PMC6042107.
  30. He C, Weston TA, Jung RS, Heizer P, Larsson M, Hu X, Allan CM, Tontonoz P, Reue K, Beigneux AP, Ploug M, Holme A, Kilburn M, Guagliardo P, Ford DA, Fong LG, Young SG, Jiang H. (2018) NanoSIMS analysis of intravascular lipolysis and lipid movement across capillaries and into cardiomyocytes. Cell Metab. 27:1055–1066.e3. PMC5945212
  31. Larsson M, Allan CM, Heizer PJ, Tu Y, Sandoval NP, Jung RS, Walzem RL, Beigneux AP, Young SG, and Fong LG. (2018) Impaired thermogenesis and sharp increases in plasma triglyceride levels in GPIHBP1-deficient mice during cold exposure. J. Lipid Res. 59:706–713. PMC5880501
  32. Miyashita K, Fukamachi I, Nagao M, Ishida T, Kobayashi J, Machida T, Nakajima K, Murakami M, Ploug M, Beigneux, AP, Young SG, and Nakajima K. (2018) An enzyme-linked immunosorbent assay for measuring GPIHBP1 levels in human plasma or serum. J. Clin. Lipidol. 12:203–210. PMC5963937
  33. He C, Hu X, Weston TA, Jung RS, Sandhu J, Huang S, Heizer P, Kim J, Ellison R, Xu J, Kilburn M, Bensinger SJ, Riezman H, Tontonoz P, Fong LG, Jiang H, Young SG (2018) Macrophages release plasma membrane–derived particles rich in accessible cholesterol. Proc. Natl. Acad. Sci USA Sep 4;115(36):E8499-E8508. doi: 10.1073/pnas.1810724115. Epub 2018 Aug 20.
  34. He C, Hu X, Jung R, Larsson M, Tu Y, Vogel SD, Kim P, Sandoval NP, Allan CM, Bensadoun A, Walzem R, Kuo R, Beigneux AP, Fong LG, and Young SG. (2017) Lipoprotein lipase is found in the capillary lumen of chickens despite an apparent absence of GPIHBP1. JCI Insight 2(20). pii: 96783. doi: 10.1172/jci.insight.96783. PMC5846916
  35. Hu X, Dallinga-Thie GM, Hovingh GK, Chang SY, Sandoval NP, Dang TLP, Fukamachi I, Miyashita K, Nakajima K, Murakami M, Fong LG, Ploug M, Yung SG, and Beigneux AP. (2017) GPIHBP1 autoantibodies in a patient with unexplained chylomicronemia. J. Clin. Lipidology 11: 964–971 [PMC 5568906]
  36. Allan CM, Jung CJ, Larsson M, Heizer PJ, Tu Y, Sandoval NP, Dang TLP, Jung RS, Beigneux AP, de Jong PJ, Fong LG, Young SG. (2017) Mutating a conserved cysteine in GPIHBP1 reduces amounts of GPIHBP1 in capillaries and abolishes LPL binding. J Lipid Res. 58:1453–1461 [PMC 5496041]
  37. He C, Hu X, Jung RS, Weston TA, Sandoval NP, Tontonoz P, Kilburn M, Fong LG, Young SG, Jiang H. (2017) High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS. Proc. Natl. Acad. Sci. USA 114:2000–2005. [PMC5338444]
  38. Beigneux AP, Miyashita K, Ploug M, Blom DJ, Ai M, Linton MF, Khovidhunkit W, Dufour R, Garg A, McMahon MA, Pullinger CR, Sandoval NP, Hu X, Allan CM, Larsson M, Machida MT, Murakami M, Reue K, Tontonoz P, Goldberg IJ, Moulin P, Charrière S, Fong LG, Nakajima K, and SG Young. (2017) Autoantibodies against GPIHBP1 as a cause of hypertriglyceridemia. New Engl. J. Med. 376:1647–1658. doi: 10.1056/NEJMoa1611930. PMC5555413
  39. Hu, X., M. W. Sleeman, K. Miyashita, M. F. Linton, C. M. Allan, C. He, M. Larsson, Y. Tu, N. P. Sandoval, R. S. Jung, A. Mapar, T. Machida, M. Murakami, K. Nakajima, M. Ploug, L. G. Fong, S. G. Young, and A. P. Beigneux. 2017. Monoclonal antibodies that bind to the Ly6 domain of GPIHBP1 abolish the binding of LPL. J Lipid Res 58:208–215. PMC5234723
  40. Allan CM, Larsson M, Jung RS, Ploug M, Bensadoun A, Beigneux AP, Fong LG, Young SG (2016). Mobility of HSPG-bound LPL explains how LPL is able to reach GPIHBP1 on capillaries. J Lipid Res 58:216–225. PMC5234724
  41. Mysling S, Kristensen KK, Larsson M, Kovrov O, Bensadoun A, Jørgensen, TJD, Olivecrona G, Young SG, Ploug M (2016). ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and that unfolding is counteracted by GPIHBP1. Elife pii: e20958. doi: 10.7554/eLife.20958. PMC5148603
  42. Allan CM, Larsson M, Hu X, He C, Jung RS, Mapar A, Voss C, Miyashita K, Machida T, Murakami M, Nakajima K, Bensadoun A, Ploug M, Fong LG, Young SG, Beigneux AP (2016). A lipoprotein lipase (LPL)-specific monoclonal antibody, 88B8, that abolishes the binding of LPL to GPIHBP1. J Lipid Res. 57:1889–1898. PMC5036369
  43. Fong LG, Young SG, Beigneux AP, Bensadoun A, Oberer M, Jiang H, Ploug M. (2016). GPIHBP1 and plasma triglyceride metabolism. Trends in Endocrinology and Metabolism 27:455–469. doi: 10.1016/j.tem.2016.04.013. PMC4927088
  44. Dijk W, Beigneux AP, Fong LG, Larsson M, Young SG, and Kersten S. Angiopoietin-like 4 (ANGPTL4) promotes intracellular degradation of lipoprotein lipase in adipocytes. (2016) J Lipid Res. 57:1670–1683. PMC5003152
  45. Mysling S, Kristensen KK, Larsson M, Beigneux AP, Gårdsvoll H, Fong LG, Bensadoun A, Jørgensen TJD, Young SG, Ploug M. (2016) The acidic domain of the endothelial cell protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. Elife. 2016 Jan 3;5:e12095. doi: 10.7554/eLife.12095. PMC4755760
  46. Beigneux AP, Fong LG, Bensadoun A, Davies BS, Oberer M, Gårdsvoll H, Ploug M, Young SG (2015) GPIHBP1 missense mutations often cause multimerization of GPIHBP1 and thereby prevent lipoprotein lipase binding. Circ. Res. 116:624–632. PMC4329087
  47. Plengpanich W, Young SG, Khovidhunkit W, Bensadoun A, Karnman H, Ploug M, Gardsvoll H, Leung CS, Adeyo O, Larsson M, Muanpetch S, Charoen S, Fong LG, Niramitmahapanya S, Beigneux AP (2014) Multimerization of GPIHBP1 and familial chylomicronemia from a serine-to-cysteine substitution in GPIHBP1’s Ly6 domain. J. Biol. Chem. 289:19491–19499. PMC4094059
  48. Goulbourne CN, Gin P, Tatar A, Nobumori C, Hoenger A, Jiang H, Grovenor CRM, Adeyo O, Esko JD, Goldberg IJ, Reue, K, Tontonoz P, Bensadoun A, Beigneux AP, Young SG, Fong LG. (2014) The GPIHBP1–LPL complex is responsible for the margination of triglyceride-rich lipoproteins in capillaries. Cell Metab. 19:849–860. PMC4143151
  49. Davies BJS, Goulbourne CN, Barnes RH, Turlo KA, Gin P, Vaughan S, Vaux DJ, Bensadoun A, Beigneux AP, Fong LG, Young SG. (2012). Assessing mechanisms of GPIHBP1 and lipoprotein lipase movement across endothelial cells. J. Lipid Res. 53:2690-2697. PMC3494248
  50. Gin P, Goulbourne CN, Adeyo O, Beigneux AP, Davies BSJ, Tat S, Voss CV, Bensadoun A, Fong LG, Young SG (2012) Chylomicronemia mutations yield new insights into interactions between lipoprotein lipase and GPIHBP1. Human Mol. Genetics 21:2961-2972. PMC3373243
  51. Weinstein MM, Goulbourne C, Davies BSK. Tu Y, Barnes RH, Watkins SM, Davis R, Reue K, Tontonoz P, Beigneux AP, Fong LG, Young SG. (2012) Reciprocal metabolic perturbations in the adipose tissue and liver of GPIHBP1-deficient mice. Arterioscler. Thromb. Vasc. Biol. 32:230–235. PMC3281771
  52. Beigneux AP, Davies BSJ, Tat S, Chen J, Gin P, Voss CV, Weinstein MM, Bensadoun A, Pullinger C, Fong LG, Young SG. (2011) Assessing the role of glycosylphosphatidylinositol-anchored high density lipoprotein–binding protein 1’s three-finger domain in binding lipoprotein lipase. J. Biol. Chem. 286:19735–19743. PMC3103352
  53. Voss CV, Davies B, Shelly Tat, Gin P, Fong LG, Pelletier C, Mottler C, Bensadoun A, Beigneux AP, Young SG. (2011) Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1. Proc. Natl. Acad. Sci. USA, 108:7980–7984. PMC3093490
  54. Olafsen T, Young SG, Davies BSJ, Kenanova VE, Voss C, Young G, Wong K-P, Branes RH, Tu Y, Weinstein MM, Nobumori C, Huang S-C, Goldberg IJ, Bensadoun A, Wu, AM, Fong LG. (2010) Unexpected expression pattern for glycosylphosphatidylinositol-anchored HDL-binding protein 1 (GPIHBP1) in mouse tissues revealed by positron emission tomography scanning. J. Biol. Chem. 285:39239–39248. PMC2998116
  55. Gin P, Beigneux AP, Voss C, Davies BSJ, Beckstead JA, Ryan RO, Bensadoun A, Fong LG, Young SG. (2010) Binding preferences for GPIHBP1, a GPI-anchored protein of capillary endothelial cells. Arterioscler Thromb Vasc Biol. 30:2106–2113. PMC3004026
  56. Weinstein MM, Tu Y, Beigneux AP, Davies BS, Gin P, Voss C, Walzem RL, Reue K, Tontonoz P, Bensadoun A, Fong LG, Young SG. (2010) Cholesterol intake modulates plasma triglyceride levels in GPIHBP1-deficient mice. Arterioscler Thromb Vasc Biol. 31:176–182. PMC2959134
  57. Davies BS, Beigneux AP, Barnes RH II, Tu Y, Gin P, Weinstein MM, Nobumori C, Nyrén R, Goldberg I, Olivecrona G, Bensadoun A, Young SG, Fong LG. (2010) GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metabolism 12:42–52. PMC2913606
  58. Franssen R, Young SG, Peelman F, Hertecant J, Sierts JA, Schimmel AW, Bensadoun A, Kastelein JJ, Fong LG, Dallinga-Thie GM, Beigneux AP. (2010) Chylomicronemia with low postheparin lipoprotein lipase levels in the setting of GPIHBP1 defects. Circulation: Cardiovasc. Gen. 3:169–178. PMC2858258
  59. Olivecrona G, Ehrenborg E, Semb H, Makoveichuk E, Lindberg A, Hayden MR, Gin P, Davies BS, Weinstein MM, Fong LG, Beigneux AP, Young SG, Olivecrona T, Hernell O. (2009) Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia. J. Lipid Res. 51:1535–1545. PMC3035517
  60. Weinstein MM, Yin L, Tu Y, Wang X, Wu X, Castellani LW, Walzem RL, Lusis AL, Fong LG, Beigneux AP, Young SG. (2010) Chylomicronemia elicits atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 30:20–23. PMC2796285
  61. Beigneux AP, Gin P, Davies BS, Weinstein MM, Bensadoun A, Fong LG, Young SG. (2009) Highly conserved cysteines within the Ly6 domain of GPIHBP1 are crucial for the binding of lipoprotein lipase. J. Biol. Chem. 284:30240–30247. PMC2781579
  62. Beigneux AP, Franssen R, Bensadoun A, Gin P, Melford K, Peter J, Walzem RL, Weinstein MM, Davies BS, Kuivenhoven JA, Kastelein JJ, Fong LG, Dallinga-Thie GM, Young SG. (2009) Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler. Thromb. Vasc. Biol. 29:956–962. PMC2811263
  63. Beigneux AP, Davies BS, Bensadoun A, Fong LG, Young SG. (2009) GPIHBP1—a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. J. Lipid Res. 50 Suppl:S57–62. PMC2674691
  64. Davies BS, Waki H, Beigneux AP, Farber E, Weinstein MM, Wilpitz DC, Tai L, Evans RM, Fong LG, Tontonoz P, Young SG. (2008) The expression of GPIHBP1, an endothelial cell binding site for lipoprotein lipase and chylomicrons, is induced by PPARγ. Molec. Endocrin. 22:2496–2504. PMC2582544
  65. Weinstein MM, Yin L, Beigneux AP, Davies BS, Gin P, Estrada K, Melford K, Bishop JR, Esko JD, Dallinga-Thie GM, Fong LG, Bensadoun A, Young SG. (2008) Abnormal patterns of lipoprotein lipase release into the plasma in GPIHBP1-deficient mice. J. Biol. Chem. 12:34511–34518. PMC2596386
  66. Beigneux AP, Gin P, Davies BS, Weinstein MM, Bensadoun A, Ryan RO, Fong LG, Young SG. (2008) Glycosylation of Asn-76 in mouse GPIHBP1 is critical for its appearance on the cell surface and the binding of chylomicrons and lipoprotein lipase. J. Lipid Res. 49:1312–1321. PMC3055742
  67. Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, Peale F, Bunting S, Walzem RL, Wong JS, Blaner WS, Ding ZM, Melford K, Wongsiriroj N, Shu X, de Sauvage F, Ryan RO, Fong LG, Bensadoun A, Young SG. (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metabolism 5:279–291. PMC191391